Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
New Phytol ; 224(3): 1349-1360, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31400223

RESUMEN

The transition from pollinator-mediated outbreeding to selfing has occurred many times in angiosperms. This is generally accompanied by a reduction in traits attracting pollinators, including reduced emission of floral scent. In Capsella, emission of benzaldehyde as a main component of floral scent has been lost in selfing C. rubella by mutation of cinnamate-CoA ligase CNL1. However, the biochemical basis and evolutionary history of this loss remain unknown, as does the reason for the absence of benzaldehyde emission in the independently derived selfer Capsella orientalis. We used plant transformation, in vitro enzyme assays, population genetics and quantitative genetics to address these questions. CNL1 has been inactivated twice independently by point mutations in C. rubella, causing a loss of enzymatic activity. Both inactive haplotypes are found within and outside of Greece, the centre of origin of C. rubella, indicating that they arose before its geographical spread. By contrast, the loss of benzaldehyde emission in C. orientalis is not due to an inactivating mutation in CNL1. CNL1 represents a hotspot for mutations that eliminate benzaldehyde emission, potentially reflecting the limited pleiotropy and large effect of its inactivation. Nevertheless, even closely related species have followed different evolutionary routes in reducing floral scent.


Asunto(s)
Benzaldehídos/metabolismo , Evolución Biológica , Capsella/genética , Alelos , Aminoácidos/genética , Ecotipo , Geografía , Haplotipos/genética , Cinética , Región Mediterránea , Mutación/genética , Odorantes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 93(5): 905-916, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29315918

RESUMEN

Peroxisomal ß-oxidative degradation of compounds is a common metabolic process in eukaryotes. Reported benzoyl-coenzyme A (BA-CoA) thioesterase activity in peroxisomes from petunia flowers suggests that, like mammals and fungi, plants contain auxiliary enzymes mediating ß-oxidation. Here we report the identification of Petunia hybrida thioesterase 1 (PhTE1), which catalyzes the hydrolysis of aromatic acyl-CoAs to their corresponding acids in peroxisomes. PhTE1 expression is spatially, developmentally and temporally regulated and exhibits a similar pattern to known benzenoid metabolic genes. PhTE1 activity is inhibited by free coenzyme A (CoA), indicating that PhTE1 is regulated by the peroxisomal CoA pool. PhTE1 downregulation in petunia flowers led to accumulation of BA-CoA with increased production of benzylbenzoate and phenylethylbenzoate, two compounds which rely on the presence of BA-CoA precursor in the cytoplasm, suggesting that acyl-CoAs can be exported from peroxisomes. Furthermore, PhTE1 downregulation resulted in increased pools of cytoplasmic phenylpropanoid pathway intermediates, volatile phenylpropenes, lignin and anthocyanins. These results indicate that PhTE1 influences (i) intraperoxisomal acyl-CoA/CoA levels needed to carry out ß-oxidation, (ii) efflux of ß-oxidative products, acyl-CoAs and free acids, from peroxisomes, and (iii) flux distribution within the benzenoid/phenylpropanoid metabolic network. Thus, this demonstrates that plant thioesterases play multiple auxiliary roles in peroxisomal ß-oxidative metabolism.


Asunto(s)
Ácido Benzoico/metabolismo , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Tioléster Hidrolasas/metabolismo , Coenzima A/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidrólisis , Oxidación-Reducción , Peroxisomas/genética , Peroxisomas/metabolismo , Petunia/genética , Petunia/crecimiento & desarrollo , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Especificidad por Sustrato , Tioléster Hidrolasas/genética
3.
Science ; 356(6345): 1386-1388, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28663500

RESUMEN

Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Petunia/química , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Interferencia de ARN
4.
Nat Commun ; 6: 8142, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26356302

RESUMEN

In addition to proteins, L-phenylalanine is a versatile precursor for thousands of plant metabolites. Production of phenylalanine-derived compounds is a complex multi-compartmental process using phenylalanine synthesized predominantly in plastids as precursor. The transporter(s) exporting phenylalanine from plastids, however, remains unknown. Here, a gene encoding a Petunia hybrida plastidial cationic amino-acid transporter (PhpCAT) functioning in plastidial phenylalanine export is identified based on homology to an Escherichia coli phenylalanine transporter and co-expression with phenylalanine metabolic genes. Radiolabel transport assays show that PhpCAT exports all three aromatic amino acids. PhpCAT downregulation and overexpression result in decreased and increased levels, respectively, of phenylalanine-derived volatiles, as well as phenylalanine, tyrosine and their biosynthetic intermediates. Metabolic flux analysis reveals that flux through the plastidial phenylalanine biosynthetic pathway is reduced in PhpCAT RNAi lines, suggesting that the rate of phenylalanine export from plastids contributes to regulating flux through the aromatic amino-acid network.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Vías Biosintéticas , Escherichia coli , Análisis de Flujos Metabólicos , Petunia , Plantas Modificadas Genéticamente , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Tirosina/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(40): 16383-8, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988098

RESUMEN

Despite the importance of benzoic acid (BA) as a precursor for a wide array of primary and secondary metabolites, its biosynthesis in plants has not been fully elucidated. BA formation from phenylalanine requires shortening of the C(3) side chain by two carbon units, which can occur by a non-ß-oxidative route and/or a ß-oxidative pathway analogous to the catabolism of fatty acids. Enzymes responsible for the first and last reactions of the core BA ß-oxidative pathway (cinnamic acid → cinnamoyl-CoA → 3-hydroxy-3-phenylpropanoyl-CoA → 3-oxo-3-phenylpropanoyl-CoA → BA-CoA) have previously been characterized in petunia, a plant with flowers rich in phenylpropanoid/benzenoid volatile compounds. Using a functional genomics approach, we have identified a petunia gene encoding cinnamoyl-CoA hydratase-dehydrogenase (PhCHD), a bifunctional peroxisomal enzyme responsible for two consecutively occurring unexplored intermediate steps in the core BA ß-oxidative pathway. PhCHD spatially, developmentally, and temporally coexpresses with known genes in the BA ß-oxidative pathway, and correlates with emission of benzenoid volatiles. Kinetic analysis of recombinant PhCHD revealed it most efficiently converts cinnamoyl-CoA to 3-oxo-3-phenylpropanoyl-CoA, thus forming the substrate for the final step in the pathway. Down-regulation of PhCHD expression in petunia flowers resulted in reduced CHD enzyme activity, as well as decreased formation of BA-CoA, BA and their derived volatiles. Moreover, transgenic lines accumulated the PhCHD substrate cinnamoyl-CoA and the upstream pathway intermediate cinnamic acid. Discovery of PhCHD completes the elucidation of the core BA ß-oxidative route in plants, and together with the previously characterized CoA-ligase and thiolase enzymes, provides evidence that the whole pathway occurs in peroxisomes.


Asunto(s)
Ácido Benzoico/metabolismo , Vías Biosintéticas/fisiología , Flores/metabolismo , Odorantes/análisis , Oxidorreductasas/genética , Petunia/metabolismo , Acilcoenzima A/química , Vías Biosintéticas/genética , Cromatografía Líquida de Alta Presión , Cartilla de ADN/genética , Genómica , Cinética , Espectrometría de Masas , Metabolómica , Estructura Molecular , Oxidación-Reducción , Oxidorreductasas/química , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA